Wasu Pathom-aree, Chiang Mai University, Thailand #### Article history: Received: September 19, 2020; Revised: December 5, 2020; Accepted: January 4, 2021; Published online: March 5, 2021 ### Corresponding author: Pongtip Sithisarn, E-mail: pongtip.sit@mahidol.ac.th ## Research article # Antioxidant, q-Glucosidases and q-Amylase Inhibitory Activities of Persicaria odorata Kanya Thongra-ar¹, Piyanuch Rojsanga^{2,5}, Savita Chewchinda³, Supachoke Mangmool⁴, and Pongtip Sithisarn 1,5,* - 1 Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand 2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand - 3 Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand - 4 Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand - 5 Center of Innovative Pharmacy for Pharmaceutical and Herbal Product Development, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand **Abstract** The objects of this study were to determine the effects to reactive oxygen species and antioxidant enzymes levels in HEK-293 cells and inhibition of a-glucosidases and a-amylase enzymes of extracts from Persicaria odorata or phak phaeo. The ethanol extracts from the leaves and the stems of phak phaeo were investigated for their 2,2-diphenyl-1-picryhydrazyl (DPPH) scavenging activities (IC₅₀ were 7.74 \pm 0.47 and 7.91 \pm 0.43 μ g/mL, respectively). Cellular antioxidant effects in human embryonic kidney-293 (HEK-293) cells with these extracts (0.1 mg/mL) also increased the mRNA expressions of manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx-1), catalase and glutathione reductase (GRe). The leaf extract showed the higher efficacies in the induction of the mRNA expressions of Mn-SOD, GPx-1 and GRe while the stem extract exhibited a stronger effect to the induction of catalase. Phak phaeo in vitro inhibitory effects to a-glucosidase enzyme (IC₅₀ values of 9.82 \pm 1.64 and 13.99 \pm 1.45 μ g/mL, respectively and also strong inhibition to a-amylase with IC₅₀ values of 90.66 \pm 8.75 and 19.96 \pm 5.37 μ g/mL, respectively). Lineweaver-Burk plot demonstrated that phak phaeo extracts inhibited a-glucosidase and aamylase in non-competitive manners. Total phenolic and total flavonoid contents were determined by Folin-Ciocalteu and aluminium chloride methods (the leaf and stem extracts were 22.89 \pm 9.16 and 22.27 \pm 8.77 g gallic acid equivalent in 100 g extract (g% GAE) and 7.20 ± 3.61 and 4.06 ± 1.73 g quercetin equivalent in 100 g extract (g% QE), respectively). Keywords: Antioxidant enzymes, DPPH, HEK-293, MTT assay, Persicaria odorata, Reactive oxygen species, Total phenolic, Total flavonoid, a-glucosidases, a-amylase Funding: This research project is supported by Faculty of Pharmacy, Mahidol University under the Research Cluster Grant. This research is partially supported by the 50th Anniversary of the Establishment of Faculty of Pharmacy, Mahidol University Scholarship. Citation: Thongra-ar, K., Rojsanga, P., Chewchinda, S., Mangmool, S., and Sithisarn, P. 2021. Antioxidant, a-glucosidases and a-amylase inhibitory activities of Persicaria odorata. CMUJ. Nat. Sci. 20(3): e2021051.